Application Fields of 316L Stainless Steel Powder

316L Stainless Steel Powder - Application Fields

316L stainless steel Powder This metal powder is used widely in many fields because of its outstanding corrosion resistance. Here is a detailed guide to using 316L stainless-steel powder in various fields.

1. Aerospace field

In aerospace, 316L Stainless Steel Powder is widely used for the manufacture of high-strength components that are corrosion resistant. 316L stainless powder is a high-temperature, corrosion-resistant material that can maintain its performance even in extreme environments. 316L stainless powder can be used to produce high-temperature jet engine components, such as combustion chambers, turbine blades, etc. that can withstand up to 600°C and high pressure airflow.

Additionally, 316L powder is used for manufacturing structural components of high strength in aerospace vehicles. These include beams and frames. Due to the excellent processing and weld performance, it is easily processed into a variety of complex structural components. Dimensional accuracy and stability are ensured.

2. Petrochemical Industry

316L stainless powder is widely used in the petrochemical industries to make high-strength, corrosion-resistant pipelines and equipment. The 316L stainless steel powder has excellent corrosion resistance and can resist various chemical substances. This ensures the stable operation of the equipment over a long period of time. For example, when manufacturing petrochemical machinery, 316L stainless powder is used to make high-temperature high-pressure pipelines and containers. This can withstand corrosion from various chemicals, while ensuring its strength and sealing.

Additionally, 316L stainless powder is used for manufacturing filters, separators, catalyst carriers, and other components within the petrochemical industry. Its high temperature and corrosion resistance ensures the stability and long-term operation of the equipment.

3.Medical field

In the medical field 316L powder stainless steel is widely used for manufacturing high-quality medical implants and devices. Its non-toxic, harmless, and biocompatible effects on human bodies, along with its high biocompatibility can guarantee the stability and safety of a product for a long time. This is why it's widely used to make medical devices and human implants. In manufacturing artificial joints and prostheses as well as other implants, 316L Stainless Steel Powder is used for support structures and connectors. It ensures strength and stability as well as corrosion and wear resistance.

The medical industry also uses 316L powder to make high-quality medical devices and surgical instruments. Due to the good welding and processing performance of 316L stainless steel powder, medical equipment can be made in complex shapes and with improved reliability.

4. Industrial sector

316L powder stainless steel is widely used in industrial applications to produce high-strength components and equipment that are resistant to corrosion. You can use it to make high-quality mechanical elements such as bolts, springs, chemical equipment, or ship components. The excellent anti-corrosion performance and corrosion resistance of this material can help to ensure that the equipment will operate smoothly and efficiently for a long time.

The power and electronic industries are also major users of 316L powder. 316L stainless powder is used in the manufacture of batteries and electronic components to produce components like brackets, shells and terminals. These components can enhance quality and safety.

Summary: 316L stainless-steel powder has many uses in various fields.

About KMPASS

KMPASS is a global supplier & manufacturer of super-high-quality chemicals & Nanomaterials with more than 12 years' experience. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a leading manufacturer of nanotechnology products, dominates the market. Our professional team offers perfect solutions to improve the efficiency of different industries, create value and cope with a variety of challenges. Send an email to Sales2@nanotrun.com for 316L powder.

Application Fields of Nickel Based Alloys

Nickel Based Alloys: Applications

Nickel-based alloy Based on nickel, it is made up of different alloying materials. It has excellent mechanical properties, high-temperature resistance and corrosion resistance. It's used in aviation and aerospace as well as petrochemicals and other industries. This article will give a detailed description of the Applications of nickel-based alloys in different fields such as aerospace, petrochemicals and power energy. It also provides references for Research and Application.

Applications of nickel-based alloys to the aerospace industry

The aerospace sector is one important area for the application. Nickel-based alloys These are the main components used in aerospace to produce high-performance products like aircraft, rockets, or satellites.

Aircraft engine components

Aircraft engines include:

* The aviation industry's core equipment.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

* Mechanical properties

Nickel-based metals exhibit excellent strength at high temperatures, as well as creep and fatigue resistance. The alloys are widely used for aircraft engine parts, including turbine blades and guides.

Rocket engine components

Rocket engines are key equipment in the launch of satellites and space probes. They require materials with extreme high-temperature strengths and corrosion resistance. Nickel-based alloys In the manufacture of rocket engines are commonly used key components like combustion chambers. nozzles and turbine disks.

Satellite structural components

Satellites' structural components need materials that have excellent corrosion resistance and high temperature resistance. Many structural components, including solar panels and structural frame frames, are manufactured using nickel-based materials.

Use of nickel-based alloys for the petrochemical Industry

Nickel-based materials are also widely used in the petrochemical and chemical industries. Nickel-based alloys are primarily used in the manufacture of key equipment, such as high temperature and high pressure reactors and pipes, for the petrochemical industries.

High-temperature reactor

High-temperature Reactors are:

* The main equipment in the petrochemical industries.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

* Mechanical properties

Alloys based on nickel have excellent mechanical, corrosion and high-temperature properties. High-temperature reactors like hydrogenation reactors or reforming reactors are made with these alloys.

High-pressure pipeline

In the petrochemical industries, high-pressure pipes are essential equipment. Materials with excellent corrosion resistance, high-pressure resistance and mechanical properties are required. Nickel-based materials are widely used for high-pressure pipe manufacturing because of their excellent high-pressure resistance, corrosion resistance, as well as mechanical properties.

Applications of nickel-based materials in the field power energy

The electric energy sector is another area where nickel-based materials are used. These alloys are mainly employed in the manufacture of high-temperature exchangers and in gas turbines.

High-temperature heat exchanger

The high-temperature heat-exchangers in the power and energy industry are essential equipment. Materials with excellent resistance to corrosion, as well as mechanical properties, are required. Nickel-based materials have excellent mechanical, corrosion-resistant, and high-temperature properties. The alloys are widely used for high-temperature exchangers like air preheaters or flue gas exchangers found in coal-fired electricity stations.

Gas turbine blades

Gas turbines can be:

* Equipment for energy conversion and electricity generation.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

Mechanical properties

In the manufacture of gas turbines such as blades, key components and other parts, nickel-based materials are used widely.

Applications of nickel-based alloys to biomedicine

Biomedical applications are another important area for nickel-based metals. These alloys are used to manufacture medical devices like artificial joints and vascular scaffolds.

Artificial joint

Artificial joints can be:

* Medical devices which replace diseased joints.

* Requires materials with excellent corrosion resistance.

* Biocompatibility.

Mechanical properties

Alloys based on nickel have excellent corrosion resistance and biocompatibility. They are also used to manufacture artificial joints.

Vascular stent

Materials with outstanding corrosion resistance and biocompatibility are required for vascular stents. Nickel-based materials are highly corrosion resistant, biocompatible, and flexible and are widely used for vascular devices.

As a summary, nickel-based materials have been extensively used in the fields of aerospace, petrochemicals power energy and biomedicine. In the future, with the continued development of technology and the use of nickel-based materials, they will become more widely used, contributing to industrial and technological development.

About KMPASS

KMPASS is a global supplier and manufacturer of high-quality nanomaterials, chemicals, and other materials. We have over 12 year experience. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions that can help industries improve their efficiency, create value and overcome various challenges. You can contact us at sales2@nanotrun.com for Inonel 718 Powder.

CLC blocks and foamed concrete lead the reform of the construction industry

CLC Blocks and foamed Concrete, two new energy-saving materials that are environmentally friendly, lead the construction industry reform.

As environmental awareness continues to improve, the construction industry is now focusing on more energy-saving and environmentally friendly building materials.

The construction industry has been gradually adopting CLC block as an environmentally friendly, energy efficient, and durable wall material.

CLC block It is an energy-saving material for walls made of fly ash, cement, river sand and slag.

Its characteristics include high strength, lightweight, heat insulation and thermal insulation. It also has a convenient and efficient design, long service lives, and is able to reduce energy consumption and maintenance costs of buildings.

Compare with the traditional clay brick CLC block It has many benefits.

CLC blocks reduce pollution and production costs by using a variety of raw materials. These include cement, slag, and other industrial wastes as well as natural materials like river sand.

The CLC block is also light and strong, which reduces the weight of a building and enhances its seismic performance.

CLC blocks have excellent thermal insulation as well as sound insulation and thermal resistance, which can help to improve the performance and comfort of buildings.

Construction of CLC blocks can be done quickly and easily, which will greatly reduce construction time.

A new wall material, foam concrete, has also attracted a lot of attention.

The building material is lightweight, strong, and thermally and acoustically insulating. It's made up of raw materials, such as foaming agent, cement and foam agent.

In comparison with traditional concrete, the foam concrete not only has a better thermal insulation and sound insulation, but can also reduce self-weight.

Foamed concrete is made from cement and foaming agent. The foam structure of the foamed material is formed through mixing and foaming.

This foam structure is able to make concrete lighter and soundproof. It can also insulate heat.

The foam concrete can also meet the needs of building structures in terms load bearing, durability and flexibility.

New wall materials have a wide range of applications in the construction industry. CLC block The foam concrete range is quite broad.

You can use them for the exterior and interior walls as well as thermal and sound insulation.

These materials also have characteristics that are compatible with the construction industry's current trend, such as a simple production process and low costs. They also provide good environmental protection.

The construction industry is gradually becoming more interested in and favoring the new wall materials CLC Block and foam concrete due to their outstanding performance and extensive application potential.

It is expected that, in the future, due to the development of science and technologies, these materials will become more important and play a greater role in the building industry. They are also believed to promote a greener construction industry.

What is Zinc Sulfide

Zinc Sulfide:

Its chemical formula is ZnS. Its molecular weight, 134.72. It is created by interacting through ionic interactions with zinc ions, (Zn2+), and sulfur ions, (S2-). In the crystal, the sulfur ions form a tetrahedron with a zinc ion in the middle. The sulfur ion occupies the center of the tetrahedron. This structure can also be described as a face centered cubic crystal system where zinc and sulfur ions occupy respective vertex and face centered positions in the lattice.

Zinc Sulfide (also known as Zinc Sulfide) is an insoluble, white solid. It is not soluble in water. However, it is soluble with bases and acids. Zinc sulfide's density is 3.98 g/cc, with a melting and boiling temperature of 1 350 degrees C. The light transmission range of zinc sulfide is between 200 and 400nm. Zinc sulfide has relatively stable properties, but under certain circumstances it can react. Zinc sulfide is oxidized, for instance, when it comes into contact with an oxidizing substance. In an environment that is alkaline, zinc sulfide will react with hydroxide molecules to produce zinc hydroxide.

Application Of Zinc Sulfide

Zinc sulfide, also known as zinc sulfur, is an important compound. The unique crystal structure and chemical and physical characteristics of zinc sulfide have made it a widely used compound in many fields. We will discuss the various applications of zinc sulfide.

1. Manufacturers of phosphor

Zinc Sulfide has many uses, including in the production of fluorescent screens. Zinc sulfide, used in the manufacture of fluorescent screens, can be made into phosphors which, upon being excited by external lights, emit different colors. In the manufacture of fluorescent lamps, zinc-sulfide also makes phosphors which emit visible light upon being excited by ultraviolet radiation.


2. Manufacturing of photoelectric conversion materials

Zinc Sulfide, a material used for photoelectric conversion, can also be used in the manufacture of solar cells. Zinc sulfide converts light energy into electrical power in solar cells. The photoelectric efficiency of zinc sulfide, combined with its low cost, makes it a material that has wide applications.


3. Drug Manufacturing

Zinc Sulfide, because of its biological activity, has many applications in pharmaceutical production. Zinc sulfide is used in the manufacture of anti-malarials, including zincsulfate as well as zinc acetate. The zinc sulfide used can be used for the production of preservatives and fungicides.


4. Catalyst Manufacturing

Zinc sulfur acts as a catalyst for the creation of other compounds like zinc acetates, acetones, and methylisobutylketone. Zinc sulfur is an excellent catalyst for manufacturing due to its high activity.


5. Optical device manufacturing

Due to its high transparency, zinc sulfur is used widely in optical devices. Zinc sulfide is used, for instance, in optical fiber communication to produce optical fiber preforms. Additionally, zinc sulfide may be used to make optical devices like optical Windows and lenses.

Production method of Zinc Sulfide.

1. Method of chemical precipitation

The chemical precipitation method is the most common way to prepare zinc sulfide. The zinc sulfide was obtained by mixing zinc salt with sulfur salt in solution.

Solution for preparation: Dissolve a suitable amount of zinc salt and sulfur salt into water to create a solution.

Precipitation reaction : the above solution is heated in stirring conditions and an appropriate amount precipitating agent is then added to precipitate both zinc ions (and sulfur ions) to generate zinc-sulfide precipitation.

Filtration : The reaction is filtered in order to obtain a filtrate that contains zinc-sulfide precipitation.

Cleaning: The filtered precipitation of zinc sulfide is cleaned with alcohol in order to remove impurities.

Drying: After washing the zinc sulfide it is precipitated then dried to get zinc sulfide.

The benefits of chemical precipitation include low cost and a high level of product purity. The disadvantages of this method are that it requires many detergents and precipitating agents. Also, the waste liquid generated must be further processed before being discharged, which can cause environmental pollution.


2. Synthesis of solid phases at high temperatures

Traditional methods for the preparation of zinc sulfide include high-temperature solid-phase synthesis. A solid reaction of sulfur oxides and zinc at high temperature produced zinc sulfide.

Ingredients: To make raw materials, the appropriate amount of carbon powder, zinc oxide powder, and sulfur dioxide powder is mixed.

Pretreatment: The raw material is pretreated at high temperature to ensure that all components react and generate zinc vapor.

Synthesis: Zinc and sulfur are combined at high temperature to form zinc sulfide.

Collection: The powdered zinc sulfide is collected and processed accordingly.

The high-temperature, solid-phase synthesis is characterized by high purity, excellent crystallinity, as well as a relatively straightforward process. The method does require high temperatures, and it uses a lot of sulfur powder and carbon powder.


3. Soluthermal method

The solvothermal process is a method that has been developed to prepare zinc sulfide. The method is to dissolve zinc salts and sulfur salts in organic solvents under high pressure and temperature. This produces zinc sulfide by hydrothermal reaction.

Preparation Solution: Dissolve an appropriate amount of zinc salt and sulfur in organic solvent.

High temperature and pressure reaction: The above-mentioned solution is placed in the high-temperature reactor and under high-pressure conditions, a hydrothermal process is performed to produce zinc-sulfide.


Collection: The generated powder of zinc sulfide will be collected and treated as required.

The solvothermal technique has the advantage of a high purity product, a good crystallinity as well as requiring fewer steps. The method is also capable of using different organic solvants and reaction conditions in order to regulate product properties. The method is not without its limitations. It requires high-temperature, pressure equipment. And the recovery and disposal process of organic solvents are expensive and require certain technology.

It is important to consider the advantages and limitations of different methods of production of zinc sulfide, and to select the appropriate methods according to actual conditions and needs. During the production, it is important to take into account environmental protection and safety. Adopting appropriate environmental protection technologies and measures will help reduce the harm caused to the environment and humans.

Prospect Market of Zinc Sulfide

1. phosphor market prospects

Zinc sulfur is widely used to manufacture phosphor. Phosphor can emit light in different colors and absorb light. It is used widely in the display, lighting, photovoltaic, and other fields. The use of phosphors is expanding as science and technology continue to develop. This includes solar cells, optical storage, and biomedicine. Zinc sulfide has become an important material for phosphors, and the market is growing.


2. Photoelectric conversion materials: market outlook

Zinc sulfur is also widely used for the production of photoelectric materials. Photoelectric materials convert light energy to electricity. Solar cells is the most common use. The demand for solar panels is increasing as renewable energy becomes more important. The cost of photoelectric converter materials has also been steadily decreasing, as technology continues to improve.


3. Market prospects for drug manufacturing

Zinc Sulfide has also been used in the pharmaceutical industry. The pharmaceutical industry is a massive market. As people become more health-conscious, the demand for drugs increases. Zinc Sulfide can be used for antimalarial drug production and has a biological activity.


4. Prospects for the manufacturing of catalysts

Zinc sulfur is used for some catalyst production. Catalysts are substances that accelerate chemical reaction and have a variety of applications, including in the fields of environmental protection, pharmaceuticals, and chemical industries. As technology continues to develop, so do the demands for catalytic performance and selectivity. This provides more opportunities for using zinc sulfide as a catalyst.


5. The optical device market is expected to grow at a rapid rate.

Zinc sulfur is also widely employed in the manufacture of optical devices. The optical device has multiple applications, including communication, imaging and optical storage. It can modulate and transmit the light. As technology continues to develop, performance requirements for optical products are increasing. This provides more opportunities for zinc sulfide to be used in optical device production.

Price of Zinc Sulfide powder :

Many factors influence the price of a product, such as the economic activity in the industry, the demand and supply on the market and the sentiments and expectations of the market.

You can contact us for a quotation if you want to know the current price of zinc sulfide.

Zinc Sulfide Powder Supplier :

Technology Co. Ltd., () is an experienced global chemical material manufacturer and supplier with over 12 years' experience. They provide super-high-quality chemicals, such as silicon powder, nitride-powder, graphite-powder, zinc-sulfide-powder, boron-powder, etc.

Contact us and submit an inquiry if you want to buy high-quality zinc sulfur powder.

What is Zinc Sulfide ZnS Product?

Overview of Zinc Sulfide ZnS Powder

Zinc sulfide is an inorganic compound with the chemical formula ZnS. It is a white or yellowish powder that darkens when exposed to sunlight. It is stable in dry air, and will gradually oxidize into zinc sulfate in humid air for a long time. It is usually formed by the action of hydrogen sulfide and zinc salt solution. Zinc sulfide has excellent fluorescence effect and electroluminescence function. In particular, nano-zinc sulfide has a unique photoelectric effect and exhibits many excellent properties in the fields of electricity, magnetism, optics, mechanics, and catalysis.

Physical and chemical properties of zinc sulfide ZnS powder

The chemical bond between Zn and S of zinc sulfide tends to be a covalent bond. The crystal has three different configurations: low temperature type, that is, sphalerite structure, abundant in nature, colorless cubic crystal, Zn, S coordination number is 4, relative density is 4.10. 1020 ℃ High temperature type; high temperature type, namely wurtzite structure, colorless hexagonal crystal, Zn, S coordination number of 4, relative density 3.98, melting point about 1700 ℃. High temperature stable structure of zinc sulfide; high pressure type, namely chloride In the sodium structure, the coordination number of Zn and S is 6, and the relative density is 5.21. There is also a water-based compound, ZnS·H2O, which is a white powder with a relative density of 3.98 and a melting point of 1049 °C. Zinc sulfide is insoluble in water and dilute alkali, insoluble in acetic acid, but soluble in low-concentration strong acids such as hydrochloric acid, releasing hydrogen sulfide. The solubility product of zinc sulfide is similar to the K1·K2 value of hydrosulfuric acid, so the following equilibrium exists in dilute acid:

Zn2+H2S=2H+ZnS

It can be seen that in the strong acid zinc salt solution, the hydrogen sulfide gas cannot obtain zinc sulfide precipitation. Passing hydrogen sulfide gas into the zinc salt solution can get zinc sulfide precipitation, but the precipitation is not complete. Using ammonium sulfide solution as precipitating agent, the zinc ions in the zinc salt solution can be completely precipitated into zinc sulfide. Since the ammonium sulfide solution is alkaline, the acidity of the system can be reduced. In industry, the above method should be used to isolate the air. White zinc sulfide darkens when exposed to light, and is easily oxidized to zinc sulfate in the air. Zinc sulfide can be used alone as a white paint pigment or in combination with zinc oxide. Pure zinc sulfide does not emit light. If a trace amount of manganese, copper, and silver are added to the zinc sulfide crystal as an activator, it can emit different colors of fluorescence after being illuminated, called phosphor powder, which is used to make fluorescent screens and luminous paints. Zinc sulfide is also used in leather, enamel, rubber, dye and other industries.

Zinc sulfide is corrosive and toxic. It can irritate the skin. Operators should wear work clothes and protective equipment. The workshop should be well ventilated.

{xunruicms_img_title}

Application of Zinc Sulfide ZnS Powder

1. It can be used as analytical reagent, phosphor matrix, photoconductor material; or used in the manufacture of dyes, coatings, pigments, glass, curing oil, etc.

2. Zinc sulfide is widely used in the production of infrared windows, fairings, and infrared optical components. It has the characteristics of high purity, insoluble in water, moderate density and easy processing. Zinc sulfide has good refractive index uniformity and consistency. It has good image transmission performance in the 8-12μm band, but some parts start to absorb after 10um. In the mid-infrared, transmission is higher, and absorption and scattering increase with shortening of wavelength. Zinc sulfide is highly resistant to harsh environments, with twice the hardness and breaking strength of zinc selenide.

Robust front optics for zinc sulfide thermal imaging systems in the infrared window and thermal band (8 to 14 μm).

Single crystal zinc sulfide is available, but not common. In the usual spectral range, the scattering is very low. It can be used as a high-power laser device under the condition that the bulk absorption and internal structural defects of the material are strictly controlled, and the polishing technology with minimal damage and the coating technology with the highest optical quality are used.

Zinc sulfide oxidizes significantly at 300 ℃, plastic deformation occurs at about 500 ℃, and dissociation occurs at about 700 ℃. For safety reasons, zinc sulfide windows should not be used in normal environments above 250°C.

3. For optical coating targets, X-ray screens, luminous dials with trace amounts of radium or neodymium salts added, TV screens, and paint pigments.

Zinc sulfide ZnS product price

The price of zinc sulfide ZnS products will change randomly due to factors such as production costs of zinc sulfide ZnS products, transportation costs, international conditions, exchange rates, and market supply and demand of zinc sulfide ZnS products. Tanki New Materials Co., Ltd. aims to help industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for Zinc Sulfide ZnS products, please feel free to send an inquiry to get the latest Zinc Sulfide ZnS product prices.

Supplier of Zinc Sulfide ZnS Products

As a global supplier of zinc sulfide ZnS products, Tanki New Materials Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced engineered materials. The company has successfully developed a series of powder materials (molybdenum disulfide, tungsten sulfide, bismuth sulfide, etc.) high-purity targets, functional ceramics and structural devices, and provides OEM services.

Zinc Sulfide Properties
Other NamesZnS powder, zinc sulphide, zinc sulfide phosphor
CAS No.1314-98-3
Compound FormulaZnS
Molecular Weight97.45
AppearanceWhite to off-white Powder
Melting Point1830 °C
Boiling PointN/A
Density4.1 g/cm3
Solubility in H2ON/A
Poisson's Ratio0.28
Specific Heat520 J/kg-K
Thermal Conductivity 27 W/m-K
Thermal Expansion6.5 µm/m-K
Young's Modulus75 GPa
Zinc Sulfide Health & Safety Information
Signal WordN/A
Hazard StatementsN/A
Flash PointN/A
Hazard CodesN/A
Risk CodesN/A
Safety StatementsN/A
RTECS NumberZH5400000
Transport InformationNONH for all modes of transport
WGK Germanynwg



Structure of Molybdenum Carbide Mo2C

Chile's government is considering phasing in a proposed ban on glacial mining to limit projects high in the Andes by some big copper companies. Chile's constitutional assembly has approved a proposal to ban mining in glaciers, protected areas, and areas vital to protecting the country's water system.

Chile's mining minister, Marcela Hernando, said about 20 mines had been identified in protected areas, some close to glaciers, including Codelco's El Teniente and Andina projects and Anglo American Plc's Los Bronces project.

The new measures for glaciers and other protected areas will put about a fifth of Chile's copper Molybdenum Carbide, Molybdenum Carbide Overview, Molybdenum Carbide Applications, Molybdenum Carbide Suppliers, Molybdenum Carbide Price prices are predicted to increase in the next few days.

Overview of molybdenum carbide Mo2C powder

The molecular formula of molybdenum carbide is Mo2C, the molecular weight is 203.88, and the carbon content is 5.89%. It is a dark grey metallic powder with a tightly packed hexagonal lattice. The density is 9.18g/cm and the melting point is 2690℃. As a new functional material, it has high melting point and hardness, good thermal and mechanical stability, and good corrosion resistance. It has been widely used for high temperature resistance, wear resistance and chemical corrosion resistance. Place.

Structure of Molybdenum Carbide Mo2C

Metal carbides are generally considered to have interstitial alloy structures. In common interstitial alloys, metal atoms are arranged in the form of face-centered cubic (FCC), hexagonal dense packing (HCP), and simple hexagonal (HEX), and non-metallic atoms enter the space between the metal atoms. The most common types of gaps between metal atoms are octahedrons and triangular prisms. The crystal structure of metal carbides depends on geometric and electronic factors. The geometric factor can be described by Hager's rule of thumb: when the atomic ratio of nonmetal to metal is below 0.59, simple crystal structures are formed. Interestingly, although metal carbides have simple crystal structures, few of these compounds have the same crystal structure as their parent metals. For example, molybdenum metal has a body-centered cubic structure, while its stable carbides have a hexagonal close-packed structure, and oxycarbides have a face-centered cubic structure. Another factor that determines the crystal structure of interstitial alloys is the electronic factor. The bonding in these compounds results from the cooperation between the sP orbitals of nonmetals and the SPD orbitals of metal atoms.

{xunruicms_img_title}{xunruicms_img_title}

Application of Molybdenum Carbide Mo2C Powder

Molybdenum carbide is a new functional material with high melting point, high hardness and excellent corrosion resistance. It has been widely used in various fields of high temperature, wear resistance and chemical corrosion. It has similar noble metal electronic structure and catalytic properties.

1. Because its electronic structure and catalytic properties are similar to those of noble metals, molybdenum carbide can be widely used as a catalyst for reactions involving hydrogen, such as alkane isomerization, unsaturated hydrocarbon hydrogenation, hydrodesulfurization, denitration, etc.;

2. Molybdenum carbide is an important part of molybdenum carbide hard coating and other cermet coatings, and can also be used alone as wear-resistant and wear-resistant coatings;

2. Molybdenum carbide is widely used in hydrogen-related reactions such as alkanes;

3. Molybdenum carbide can be used to produce chromium-free special alloys and engineering ceramics;

4. Molybdenum carbide is used as superhard tool material, wear-resistant material, heating element material, high temperature structural material;

5. Molybdenum carbide is used to produce wear-resistant films and semiconductor films;

6. Molybdenum carbide can be used to manufacture special alloys and engineering ceramics without chromium;

Molybdenum carbide Mo2C powder price

The price of molybdenum carbide Mo2C powder varies randomly with the production cost, transportation cost, international conditions, exchange rate, market supply and demand and other factors of molybdenum carbide Mo2C powder. Tanki New Materials Co.,Ltd aims to help various industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for Molybdenum Carbide Mo2C Powder, please feel free to contact us for the latest price of Molybdenum Carbide Mo2C Powder.

Molybdenum carbide Mo2C powder suppliers

As a global supplier of molybdenum carbide Mo2C powders, Tanki New Materials Ltd. has extensive experience in advanced engineering material properties, applications and cost-effective manufacturing. The company has successfully developed a series of powder materials (including boron carbide, aluminum carbide, titanium carbide, etc.), high-purity targets, functional ceramics, structural devices, and provides OEM services.

Molybdenum Carbide Properties
Other Namesdimolybdenum carbide, Mo2C powder
CAS No.12069-89-5
Compound FormulaMo2C
Molecular Weight203.89
AppearanceGray Powder
Melting Point2690
Boiling PointN/A
Density9.18 g/cm3
Solubility in H2ON/A
Exact MassN/A
Molybdenum Carbide Health & Safety Information
Signal WordN/A
Hazard StatementsN/A
Hazard CodesN/A
Risk CodesN/A
Safety StatementsN/A
Transport InformationN/A



The United States urges the U.N. Security Council to impose additional sanctions on North Korea in response to its latest ballistic missile launch, including a ban on tobacco and oil exports to North Korea and a blacklist of the Lazarus hacking group.  

The United States circulated the draft to the 15 members of the Security Council this week. It was not immediately clear if or when a vote would take place. A resolution requires nine "yes" votes and no vetoes from Russia, China, France, Britain, or the United States.  

Russia and China have already voiced opposition to tightening sanctions in response to Pyongyang's launch of an intercontinental ballistic missile last month -- the first since 2017.  

U.S. and South Korean officials and analysts also say there are growing indications that North Korea may soon conduct its first nuclear weapons test since 2017, too.  

The U.S. -drafted U.N. resolution would expand the ban on ballistic missile launches to include cruise missiles or "any other delivery system capable of delivering a nuclear weapon."  

The deal would halve crude oil exports to North Korea to 2 million barrels a year and refined oil exports to 250,000 barrels a year. The resolution also seeks to ban North Korea's export of "fossil fuels, mineral oils, and their distilled Molybdenum Carbide, Molybdenum Carbide Overview, Molybdenum Carbide Applications, Molybdenum Carbide Suppliers, Molybdenum Carbide Price are estimated to be influenced by international political situation changes.

The preparation method of lithium sulfide

Lithium Sulfide Overview

Lithium sulfide, molecular formula: Li2S, is lithium sulfide, molecular weight: 45.95. White to yellow crystals. Has an anti-fluorite structure. The specific gravity is 1.66 (water = 1), the melting point is 938°C, and the boiling point is 1372°C. Soluble in water, soluble in ethanol, soluble in acid, insoluble in alkali. as a potential electrolyte material in rechargeable lithium-ion batteries.

The preparation method of lithium sulfide

Lithium sulfide can be prepared by a variety of methods. In the past, lithium and sulfur have been co-heated for reaction, and lithium sulfide has been prepared by reducing lithium sulfate with carbon or hydrogen under heating conditions. Later, it was found that lithium sulfide can be obtained by the action of lithium and sulfur in liquid ammonia, or by the decomposition of lithium ethoxide into the ethanol adduct of lithium hydrosulfide. Since then, some people have used lithium pentoxide to react with hydrogen sulfide to first obtain lithium hydrosulfide, and then decompose lithium hydrosulfide in vacuum to prepare lithium sulfide.

High quality anhydrous lithium sulfide can be prepared by reacting metallic lithium with hydrogen sulfide in tetrahydrofuran.

{xunruicms_img_title}

Application of lithium sulfide Li2S powder

Lithium sulfide (Li2S) is a product specially designed for high-performance batteries and can be used as an electrode material or as a precursor for solid electrolytes. As an electrode material, it not only has high capacity, but also overcomes many problems brought by pure sulfur electrodes.

The lithium sulfide Li2S powder is an anti-fluorite semiconductor (with a band gap of 3.865 eV). It exists in orthogonal and cubic structures. The densities of the orthorhombic and cubic structures are 1.75g/cm3 and 1.63g/cm3, respectively.

Lithium sulfide Li2S powder has been studied as a superconductor similar to MgB2. It is also used as a cathode material for rechargeable lithium-sulfur batteries.

Lithium sulfide Li2S powder price

The price of lithium sulfide Li2S powder will change randomly with the production cost, transportation cost, international situation and market supply and demand of lithium sulfide Li2S powder. Tanki New Materials Co., Ltd. aims to help industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for lithium sulfide Li2S powder, please feel free to send an inquiry to get the latest price of lithium sulfide Li2S powder.

Lithium sulfide Li2S powder supplier

As a global lithium sulfide Li2S powder supplier, Tanki New Materials Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced engineering materials. The company has successfully developed a series of powder materials (chromium sulfide, zinc sulfide, nickel sulfide), high-purity target materials, functional ceramics and structural devices, and provides OEM services.

Gallium Sulfide Health & Safety Information
Signal WordDanger
Hazard StatementsH301-H314
Hazard CodesC
Risk Codes22-31-34
Safety Statements26-36/37/39-45
Transport InformationUN 2923 8/PG 2



How many do you know about titanium carbide TiC powder?

Russia's insistence on paying for Russian gas in rubles has rattled European countries: Greece held an emergency meeting of suppliers, the Dutch government would urge consumers to use less gas, and the French energy regulator told consumers not to panic. Russian gas meets one-third of Europe's annual energy needs.

Russia said they could expand their demand for ruble payments for other commodities, including oil, grain, fertilizer, coal, and metals, which raised the risk of recession in Europe and the US. 

Moscow is expected to unveil its ruble payment plan in early April, but it said it would not immediately ask buyers to pay for gas in rubles.  

Western countries have said paying in rubles would be a breach of contract, and renegotiation could take months or longer. This uncertainty has pushed commodity market prices higher.

The supply and prices of other commodities like the Titanium Carbide TiC Powder,Overview of Titanium Carbide TiC Powder,Application of Titanium Carbide TiC Powder,Titanium carbide TiC powder price,Titanium Carbide TiC Powder Supplier could also be affected.

Overview of Titanium Carbide TiC Powder

The chemical formula of titanium carbide is TiC. It is a steel grey crystal with a metallic sheen. It is thermally and electrically conductive, and its electrical conductivity decreases with increasing temperature, giving it the properties of a medallion. It is a hard, high-melting compound, second only to diamond in hardness, with a microhardness of 2850 kg/mm2. The lattice constant a=4.173×10-8cm. The melting point is 3150°C, the boiling point is 4820°C, and the relative density is 4.9. TiN and TiO have the same lattice and the same parameters, so a series of continuous solid solutions can be formed between them. Removal of C occurs gradually by heating above 1500 °C in H2 gas. The mixture of Ti(C,N) carbon nitride reacts with N2 gas above 1200℃ to form a variable composition. The oxidation rate of TiC is slow at 800 °C, but TiC powder can be burned in O2 at 600 °C to form TiO2 and CO2. It reacts with O2 gas at 1200℃ to generate TiO2 and CO. It does not interact with water, but can react with water vapor to form TiO2, CO and H2 at temperatures above 700°C. Does not react with CO, but reacts with CO2 at 1200°C to form TiO2 and CO. Insoluble in hydrochloric acid and lye, soluble in nitric acid and aqua regia.

{xunruicms_img_title}

Application of Titanium Carbide TiC Powder

1. Titanium carbide powder is used in high temperature thermal spraying materials, welding materials, hard coating materials, military aviation materials, carbides and cermets.

2. Titanium carbide powder is used as an additive in the production of thermistors to improve wear resistance.

3. The titanium carbide powder has a NaCl type cubic crystal structure. Adding 6% to 30% of TiC and WC to WC-Co cemented carbide forms a TiC-WC solid solution, which can significantly improve red heat, wear resistance, oxidation resistance, corrosion resistance and other properties, and is more suitable for processing steel than WC-Co Carbide. Alloys such as Ni-Mo can also be used as binders to form tungsten-free cemented carbides that improve turning speed and workpiece accuracy and finish.

4. Used as tool materials and additives for metal bismuth, zinc, cadmium smelting crucibles, preparation of semiconductor wear-resistant films, HDD large-capacity storage equipment, an important part of cemented carbide, used as deoxidizers in steelmaking industry, and also Used as a cermet, it has the characteristics of high hardness, corrosion resistance and good thermal stability.

Titanium carbide TiC powder price

The price of titanium carbide TiC powder will vary randomly with the production cost, transportation cost, international situation and market supply and demand of titanium carbide TiC powder. Tanki New Materials Co.,Ltd aims to help various industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for titanium carbide TiC powder, please feel free to send an inquiry to get the latest price of titanium carbide TiC powder.

Titanium Carbide TiC Powder Supplier

As a global supplier of titanium carbide TiC powders, Tanki New Materials Ltd. has extensive experience in advanced engineering material properties, applications and cost-effective manufacturing. The company has successfully developed a series of powder materials (including boron carbide, aluminum carbide, boron carbide, etc.), high-purity targets, functional ceramics and structural devices, and provides OEM services.

Titanium Carbide Properties
Other Namestitanium(IV) carbide, TiC powder
CAS No.12070-08-5
Compound FormulaTiC
Molecular Weight40.1
AppearanceBlack Powder
Melting Point3160 °C
Boiling Point4820 °C
Density4.93 g/cm3
Solubility in H2ON/A
Exact Mass59.947946
Titanium Carbide Health & Safety Information
Signal WordN/A
Hazard StatementsN/A
Hazard CodesN/A
Risk CodesN/A
Safety StatementsN/A
Transport InformationN/A


In a recent speech in Davos, Switzerland, Ukrainian President Volodymyr Zelensky criticized, "My question is: Is there unity in the West? "I don't see it," Zelensky lamented during a video conference from the Davos Economic Forum in Switzerland. "Ukraine needs the support of a united Europe."

"Is there talk of solidarity with Sweden and Finland joining NATO? No." "So is the West united?" Zelensky said at this Ukraine-hosted breakfast in Davos. No." "Our strength is unity within the country," Zelensky said. "Now it depends on the Unity of the West to stand strong and firm behind Ukraine against Russia.

According to Zelensky, "When we are all really united, we will have an advantage over Russia."  

Ukrainian President Volodymyr Zelensky says he once again appreciates U.S. President Joe Biden's offer of $40 billion in new financial aid to Ukraine.  

"We need the support of a united Europe," Zelensky stressed. Zelensky criticized the position of Hungarian Prime Minister Viktor Orban, who is reluctant to impose an embargo on Russian oil at this stage. "Hungary has a problem!" Zelensky criticized.

The supply and prices of many other Titanium Carbide TiC Powder,Overview of Titanium Carbide TiC Powder,Application of Titanium Carbide TiC Powder,Titanium carbide TiC powder price,Titanium Carbide TiC Powder Supplier are expected to continue to be influenced by changing international situations.

What is Lithium stearate powder

Lithium stearate is a crystalline form of lithium.

Lithium stearate has the chemical formula LiSt. It is a white powder that is solid at room temperatures. It is a highly lipophilic compound that can produce high light transmission at low concentrations. This compound is only slightly soluble when heated to room temperature, but it dissolves readily in organic solvents including acetone and ethanol. Lithium Stearate is stable and thermally safe at high temperatures because it has a melting point and flashpoint. The lithium stearate also has a good chemical stability, and is resistant to acids and bases, as well as oxidants, reductants and reducing agents. Lithium is less toxic than other metals, but should still be handled with care. An excessive intake of lithium can lead to diarrhoea or vomiting as well as difficulty breathing. Wearing gloves and goggles during operation is recommended because prolonged exposure to lithium can cause eye and skin irritation.

Lithium stearate:

Surfactant: Lithium Stearate Surfactant, lubricant, and other ingredients are used to make personal care products, such as shampoos, soaps, body washes, and cosmetics. It has excellent foam properties and good hydrolysis stabilty, resulting in a gentle and clean washing experience.

Lithium stearate has an important role to play in polymer syntheses. It can be used both as a donor and a participant in the formation of polymer chains. These polymers have good mechanical and chemical properties, making them ideal for plastics, rubber fibers, etc.

Lithium stearate can be used in cosmetic formulations to soften and moisturize the skin. It enhances moisturization, and makes the skin softer and smoother. The antibacterial and antiinflammatory properties of lithium stearate can also help with skin problems.

Paints & Coatings: Lithium is used to thicken and level paints & coatings. It helps control the flow, as well as the properties, of the final coating. It is resistant to weather and scratches, which makes the coating durable.

Applications of lithium stearate include drug carriers, excipients, and stabilizers. It can enhance the taste and solubility and stability of medications.

Agriculture: Lithium is a good fertilizer carrier. It can also be used to protect plants. It increases the efficiency of fertilizers and improves plant disease resistance.

Lithium stearate may be used in the petrochemical sector as a lubricant or release agent. As a catalyst in the cracking of petroleum, lithium stearate improves cracking yield and efficiency.

Lithium stearate production method :

Chemical synthesis method

Lithium stearate can be synthesized through a series chemcial reactions that combine stearate (stearate root) with lithium metal. In order to get the lithium metal reacting with the stearate, they are heated together in an organic solvant. After washing, separation and drying, the pure lithium-stearate product is obtained.

Following are the steps for synthesis.

(1) Mix the lithium metal with stearate roots in organic solvents such as ethanol and stir them, heating, until they fully react.

(2) The reaction solution must be cooled in order to precipitate lithium stearate.

(3) Wash the crystal with water and remove any lithium stearate particles.

(4) The dried crystals are used to make lithium stearate.

Chemical synthesis is a mature technology that offers high efficiency in production and product purity. However, organic solvents have an environmental impact and waste is generated during production.

Methode de fermentation biologique

In biological fermentation, microorganisms such as yeast are used in the medium to produce lithium. This method works on the principle that microorganisms produce stearic and react with metal ions, such as lithium, to create lithium stearate.

These are the steps that you will need to take in order to produce your product.

(1) The microorganisms will be inoculated onto the medium that contains precursors for fermentation culture.

(2) The filtrate is used to produce a solution of stearic acetic acid.

Add metals (such as the lithium ions) into the solution with stearic to ensure that they fully react.

The reaction solution will be separated, washed, and dried.

The benefits of biological fermentation include environmental protection, less waste discharge and a longer production process. However, the conditions for production are also higher.

Prospect Market of Lithium Stearate:

The application of lithium in personal care will continue to play a major role. As a surfactant or lubricant it is important in soaps. shampoos. body washes. and cosmetics. As people's standards of living improve and the cosmetics sector continues to expand, lithium stearate demand will gradually rise.

Second, the use of lithium stearate for polymer synthesis has also increased. It can be used both as a donor and a participant in polymer chain formation. As polymer materials science continues to develop, the demand of lithium stearate increases.

Lithium stearate's application in agricultural, petrochemical, pharmaceutical and other fields is also growing. In the pharmaceutical sector, lithium stearate may be used as a carrier, excipient or drug stabilizer. In agriculture, the lithium stearate is used to protect plants and as a carrier for fertilizers. In petrochemicals, lithium isostearate acts as a lubricant or release agent. In these fields, the demand for lithium will increase as technology advances.

But the outlook for the lithium stearate market is not without its own challenges. In order to produce lithium metal, it is necessary to use a more expensive production process. Aside from that, the applications of lithium is limited, with a concentration in agriculture, pharmaceuticals and petrochemicals. To expand the scope of application and market demand for lithium stearate, it is important to continually develop new applications and markets.

Lithium stearate powder price :

Many factors influence the price, such as the economic activity, the sentiment of the market and the unexpected event.

You can contact us for a quotation if you're looking for the most recent lithium stearate price.

Lithium stearate powder Supplier :

Technology Co. Ltd. has been supplying high-quality chemical materials for over 12 years.

The chemical and nanomaterials include silicon powders, nitride particles, graphite particles, zinc sulfide grains, boron grains, 3D-printing powders, etc.

Contact us today to receive a quote for our high-quality Lithium Stearate Powder.

What is a polycarboxylate superplasticizer

In 2023, the China Greater Bay Area Concrete Industry High-Quality Development Seminar and the Expo on Concrete Equipment and Technology will take place at the Guangzhou Canton Fair Complex. Guangzhou Canton Fair Complex. The conference's theme will be "Gathering Talents and Gathering Power, Talking about Smart Concrete," co-sponsored by the Guangzhou Concrete Industry Association and Guangdong Hongwei International Exhibition, responsible persons from the Guangzhou Municipal Bureau of Housing and Urban-rural Development, Municipal Bulk Cement and Building Energy Conservation Management Center as well as Concrete Industry Experts as well as representatives from downstream and upstream companies participated at the show.


A concrete core sample 200 millimeters in diameter and an overall long 25.3 meters was successfully removed from the RCC gravity dam in the Fengshan Reservoir Project in Qiannan Buyi and Miao Autonomous Prefecture, Guizhou Province, China. The length of the core sample is the longest among water conservancy projects within Guizhou Province, marking that the quality of construction and technology of the dam in the Fengshan Reservoir Project has reached the top standard.

The concrete pouring for the first warehouse at the Qishi Junction of the Pinglu Canal in China has started, which signifies that the three main points of operation for the Pinglu Canal have entered a new phase of building the main structure. This Pinglu Canal is the backbone of the land-sea channel that runs through the west. When it is finished and open to navigators, the canal will let the world's narrowest, most cost-effective, and most efficient ocean channel between Guangxi and Southwest China.


1. What is a polycarboxylate superplasticizer?

Polycarboxylate superplasticizer is used primarily in cement concrete to act as a dispersant. It is composed of polymers containing sulfonic acid group (-SO3H) and carboxyl groups (-COOH) or derivatives of them and features high efficacy, environmental protection, and security.

The role of a polycarboxylate superplasticizer is primarily to disperse cement particles more evenly by adhering to concrete particles' surfaces, decreasing the amount of water needed, and increasing the strength and flexibility of concrete in the process. Compared to traditional water-based water-reducing agents, polycarboxylate agents have a higher water reduction rate and workability that can significantly enhance the performance and strength of concrete.


2. Superplasticizers that are applied to polycarboxylate.

Polycarboxylate Superplasticizer is commonly employed in cement concrete as a dispersant. Apart from its use in bridges, highways, tunnels, dams, high-rise buildings, and various other engineering areas, it is extensively utilized for grouting, pouring material such as anchoring, plugging the waterproof mortar K11 cement self-leveling, prefabricated components, special mortars, and various other construction materials. The applications of polycarboxylate superplasticizers in these areas will be described below.


1. Highway Engineering

In highway engineering, superplasticizers made of polycarboxylate are used to make high-performance highway concrete, which can increase durability and wear endurance on the surface of roads. The superplasticizer polycarboxylate's water-reducing capacity can significantly reduce water consumption in concrete, increase concrete's strength and flexibility, and make the road surface more dense, smoother, other, smoother, and more robust. The use of polycarboxylate superplasticizers in highway engineering will fulfill the highway construction's safety, green, and durability demands.



2. Bridge Engineering

When it comes to bridge design, superplasticizers made of polycarboxylate can be used to create bridge concrete with great strength and fluidity to increase bridges' bearing capacity and service life. The high water-reducing capacity and high workability of the polycarboxylate superplasticizers can significantly enhance Bridge concrete's performance, increase the uniformity and compactness of concrete, lessen the formation of bridge cracks, and consequently increase the longevity and safety of bridges.


3. Dam Project

When it comes to dam design, superplasticizers made of polycarboxylate are used to make high-strength, high-impermeability dam cement to increase the stability and security of the dam. Dams are an essential structure that stores water resources and manages water flow. It also has demanding requirements for the stability and safety that the dam. Utilizing polycarboxylate superplasticizers will increase the resistance and impermeability of concrete dams and effectively stop cracks and leakage, improving the dam's stability and security.

4. Tunnel Engineering

Tunnel engineering is a field where superplasticizers of polycarboxylate are used to make high-strength and high-impermeability tunnel concrete to increase the durability and stability of the tunnel. Tunnels are crucial underground structures used for transport and transport, so the requirements for durability and stability of tunnels are demanding. Using superplasticizers made from polycarboxylate will increase the durability and strength of tunnel concrete. It can effectively stop cracks and leaks, improving the tunnel's durability and stability.


5. High-rise buildings

In high-rise structures, Polycarboxylate superplasticizers are employed to make high-strength, highly-fluidity concrete for high-rise buildings to improve the safety and stability of structures. Because of the number of floors and the high building heights, their requirements for the strength of the structure and seismic performance of buildings are extremely significant. Utilizing polycarboxylate superplasticizers will enhance the strength and flexibility of high-rise concrete. It can significantly improve the strength of structures and the earthquake performance of structures, increasing the stability and security of structures.


6. Material pouring, grouting anchoring, plugging, and many more fields.

Apart from its use in engineering fields like dams, bridges, road tunnels, and high-rise structures, polycarboxylate superplasticizers are extensively used in construction materials, such as grouting agents and pouring materials, as well as anchoring and plugging. In these areas, the function of superplasticizers made from polycarboxylate is mostly by adsorption on the surfaces of cement particles, ensuring that the cement particles become more evenly distributed, thus reducing the quantity of water needed while at the same time improving the quality and consistency in the materials. These applications can fulfill various specific maintenance and construction requirements.


How do you make polycarboxylate superplasticizers?

Polycarboxylate superplasticizer is extensively utilized in cement concrete to act as a dispersant. The process of making it can be broken down into the steps below:


synthetic macromonomer

It is first necessary to create macromonomers. This is one of the primary processes in producing superplasticizers from polycarboxylate. The macromonomer is the primary component of the superplasticizer polycarboxylate that has polymer chains and polar company and can be adsorbed on the surfaces of cement particles to be superplasticizers. The most popular method used is free radicals' polymerization; the primary raw materials include unsaturated acids, such as methacrylic acid, acrylic acid, and maleic acid, and polymers like polypropylene glycol and polyethylene glycol. In the process of synthesis, it is crucial to regulate the temperature of the reaction and time, as well as the proportion of ingredients and other variables, to ensure the yield and quality of the macromonomer.


Polymerization

Once the macromonomer has been synthesized, a polymerization reaction is necessary. The polymerization reaction will react to the macromonomer using an oxidizing agent, such as ammonium persulfate, to create one with a higher level of polymerization. When performing this procedure, it is important to be aware of variables like reaction temperature and the time and quantity of oxidant used to ensure the polymerization process's efficiency as well as the quality of the product.


Post-processing

After the polymerization reaction is complete, post-treatment is needed. The post-treatment process involves dissolving the water and polymer to the ratio specified, adding acidic compounds for neutralization, adjusting the pH that the solution has, and then the addition of a protective colloid as well as other components to produce the final superplasticizer made of polycarboxylate. It is essential to regulate the amount of solution, the pH value, the kind and amount of protective colloid, and other variables to guarantee the quality and effectiveness of the solution.


4. Market prospects analysis of superplasticizer polycarboxylate

Due to the rapid growth in the field of construction, demand for polycarboxylate superplasticizers is growing, and the opportunities are vast. This article will examine the potential market for superplasticizers made from polycarboxylate based on the demand for market products, the policy environment, technological advancement, competition patterns, and the latest trends.

 

1. Market demand

As urbanization is accelerating and the continued development in infrastructure development, the demand for cement concrete has been growing each year, driving the demand for superplasticizers made of polycarboxylate. Polycarboxylate superplasticizer offers the benefits of an excellent water-reducing capacity, a high working capacity, a lower shrinkage rate, and so on. It can also significantly enhance the performance and durability of concrete. This is why it is extensively used in engineering areas such as bridges, roads, dams, tunnels, and high-rise structures. A lot of people use it. As the years progress, due to the constant advancement in infrastructure construction and the constant improvement in the quality of buildings, the need for polycarboxylate superplasticizers will continue to increase.


2. Policy environment

After the pandemic struck the world, various policies for improving the construction industry have been introduced, and across the globe are now recognizing the importance of infrastructure to spur economic development. One of them is the Chinese "Outline for the Modernization of the Construction Industry," which recommended that by 2030, the size of the construction industry would reach the target of around 20% of the nation's GDP. In the meantime, China's standards for environmental protection and conservation of energy are getting strict, and this provides an incentive for policymakers to develop superplasticizers that are made of polycarboxylate. Similar policies have been enacted across China to encourage and facilitate the manufacturing and utilization of polycarboxylate superplasticizers. Also boosting demand for superplasticizers made of polycarboxylate.


3. Development of technology

With the constant advancement of new technology and science, polycarboxylate superplasticizers' manufacturing technology and performance are constantly upgraded. Today, superplasticizers made by polycarboxylate manufacturers from around the globe are continuously pursuing technological research, development, and development and have introduced an array of brand new superplasticizers made of polycarboxylate including high water-reducing models and high slump retention varieties and those with low shrinkage. Wait. Introducing these products will further expand the scope of polycarboxylate superplasticizers' applications and market spaces.


4. Competitive landscape

The polycarboxylate superplasticizer market has developed into a remarkably competitive pattern of fierce competition. Certain well-known and well-known foreign construction materials firms are using the market for polycarboxylate superplasticizers and launching various items and products. However, smaller companies are also gaining entry into the market, and competition is growing increasingly fierce. In today's competitive market, businesses must continue to increase their service and product quality levels and cut production costs to gain market share.


5. Trends

Shortly, due to the constant growth within the industry of building the market for superplasticizers made from polycarboxylate will be able to present these trends.

High performance In developing engineering requirements, the performance of polycarboxylate superplasticizers has to be continually improved to meet the needs of high-performance concrete.

Protection of the environment: As environmental protection requirements and energy efficiency are becoming increasingly demanding, polycarboxylate superplasticizers must be more eco-friendly and energy-efficient.

Customization Diverse concrete fields and industries require different kinds of superplasticizers made of polycarboxylate to ensure that consumers will accept personalized polycarboxylate products.

Intelligent: With the advancement of technologies for information and intelligence, the next polycarboxylate superplasticizer will be more sophisticated and capable of achieving automatic production and intelligent use.

In the end, the potential for market share growth for superplasticizers made of polycarboxylate is huge. However, it is necessary for businesses to constantly improve the quality of their services and products to satisfy the changing demands of the market and to adapt to changes. In the meantime, continuous technological research, as well as innovation and advancement, are vital to meet the market's needs and predict future growth trends.

Why does properly poured concrete end up cracking

It is very easy to cause concrete cracking if the construction or maintenance are not done correctly. What are then the five main causes of cracking concrete?

1. Problem of cement proportions: Some workers in construction will add more water for a more fluid concrete. However, this will result in an increase in water-cement ratio. This will cause the concrete to harden too quickly, and lead to cracking.

2. Transport and mixing issues: If mixing and transporting concrete takes too much time, the water in the concrete will evaporate quickly. concrete . This leads to a concrete that is weaker on the construction site, unable to meet construction specifications.

3. Construction speed

4. Maintenance is unreasonable. During the period of maintenance, if late watering isn't maintained, the result will be the Cracking phenomenon Later in the year, concrete will be used. Concrete is used in the future. Concrete Surface Watering You can water the concrete often to speed up the drying process. Concrete will shrink if it is not watered. Late cracking occurs when concrete strength is decreased.

5. Environmental factors: If the environment at the construction site is relatively dry and there is high temperature, wind, or both, then the evaporation of the surface concrete is increased, which results in a cracking effect on the surface. Concrete constructions are most likely to crack in the winter or summer because of the temperature difference.

Solution: Add anti-cracking agents, a variety inorganic materials composite anticracking agent can stop more than 80% cracking of foam concrete, add 2-3 kg per cubic meter.

What is Molybdenum disulfide MoS2 powder

Description of Molybdenum diulfide

Molybdenum disulfide (also known as MoS2) is a transition metal sulfide. It is dark grey, or black, solid. The layers of the crystal structure are made of alternately arranged molybdenum-sulfur atoms. Molybdenum disulfide This material is good in terms of chemical and thermal resistance. It can be easily reacted to acids or bases. It is widely used in lubricants as well as additives and composites. As an excellent oil, molybdenum diulfide offers a high load bearing capacity, low friction coefficient and good friction resistance. It is used widely in machinery, petrochemicals and automobile manufacture. In extreme environments such as high temperature, high loads, or high speeds, the molybdenum diulfide plays a lubricating function, reducing friction and wearing, and extending the service life. In addition to being used as a fuel additive, molybdenum diulfide also improves the combustion efficiency, reducing pollutant emission. This additive plays a major role in protecting the environment, as it reduces air pollutants and improves energy efficiency.

Use of Molybdenum diulfide

Molybdenum diulfide is a compound that has outstanding chemical and physical properties. It is widely used in various areas. It has excellent chemical and mechanical properties. Following are some of the most important applications for molybdenum sulfide.

Lubricants - Molybdenum Disulfide, a lubricant that is excellent for its high load carrying capacity, low friction coefficient, and good resistance to friction. It has a high lubrication capacity in high-temperature, high-load and high-speed environments. This is why it's widely used in the machinery industry, automobile manufacturing, and petrochemical industries. The molybdenum-disulfide lubricant is also used to produce lubricating grease, lubricating oil and lubricating film.

Additive - Molybdenum Disulfide, when used as a fuel additive, can increase the efficiency of combustion and reduce emissions. This additive plays a major role in protecting the environment by reducing air pollution and improving energy efficiency. As an additive, molybdenum can be added to rubber, plastics or coatings in order to improve their properties.

Composite materials. Molybdenum isulfide can also be mixed with rubber, resins, and other materials in order to produce high-performance materials such as reinforced fibres or composite plastics. These composites offer excellent mechanical properties, corrosion resistance and can be used in many industries including automotive, electronics and aerospace.

Electronic Industry Molybdenum disulfide It can be used for the electronic vapour deposition of thin MoS2 films. These thin films have excellent electrical conductivity, and transmit light well. This thin film material is suitable for optoelectronics applications, including solar cells and displays. The molybdenum-disulfide material can also be used to create transistors, Field-Effect Transistors and other electronic components. These electronic components have excellent semiconductor performance and good electronic mobility.

Production Methods of Molybdenum Diulfide

Molybdenum diulfide, a compound with excellent chemical and physical properties, is used in numerous fields. The production process can be done in many ways, including double decompositions, synthesises, flotation or electroplating. The most commonly used method is synthesis to produce the molybdenum.

The synthesis is a way to make nano MoS2 using a molybdenum, tungsten source. This method can produce sulfides of high purity with fewer impurities. This method can prepare sulfides to meet various functional requirements. The steps in the synthesis include preparation of raw materials, chemical reactions, product separation, and purification.

It is essential to prepare both a tungsten source or a molybdenum one during the preparation stage of the raw materials. Tungsten, molybdenum or metal powders are the most common sources. While sulfur can be either elemental sulfur or sulfur dioxide. The purity, chemical properties and reactions conditions of the raw materials are important factors to consider when selecting tungsten and molybdenum or sulfur sources.

In the chemical reactions stage, tungsten is Molybdenum Sources The molybdenum is disulfide produced in biochemical reactions that occur at high temperatures. The reaction temperature, the reaction time, and the reaction atmosphere are all part of the specific conditions. The temperature and reaction time of the reaction have an important effect on particle size and product purity. Reaction atmosphere has a similar impact.

The molybdenum isothiocyanate must be separated from the reaction products at the separation and purification stages using the correct separation and purification techniques. Precipitation, filtration and distillation are some of the most common separation and purification processes. These methods can be used to separate the molybdenum diulfide from impurities and obtain molybdenum products with high purity.

Other methods are available to produce molybdenum sulfide. These include the double decomposition technique, the flotation method, and the electroplating method.

The compound decomposition technique produces molybdenum by reacting ammonium motate or ammonium tantate with ammoniumsulfide. The method is able to produce molybdenum sulfide even at a low temperature. It can also prepare different molybdenum sulfide products, such as those with different particle sizes and morphologies.

Flotation is the process of extracting molybdenum diulfide by using organic agents and grinding tungsten, molybdenum or other sources with minerals like sphalerite or pyrite. This method is able to produce molybdenum products with high purity, but requires a more complicated production process and more organic agents.

Electroplating is the process of electroplating molybdenum on a metallic substrate. By using this method you can create molybdenum-disulfide films that have excellent properties. However, the chemicals and waste liquids in the electroplating will pollute the surrounding environment.

It is necessary to select the most appropriate production method based on the actual demand. It is also important to consider environmental protection and safety during the production process.

Prospect Market of Molybdenum Diulfide

Molybdenum diulfide is an important chemical compound that has excellent chemical and physical characteristics. It's widely used in machinery, industry, electronics, aviation, and other fields. Demand for molybdenum diulfide has increased due to the continued development of global economies and rapid developments in high-tech fields. Molybdenum Disulfide Market has a wide range of prospects for the future.

Molybdenum Disulfide, as a highly-performing lubricant used in petrochemical, machinery manufacturing and automobile manufacturing is widely used. As industrialization continues and mechanical equipment becomes more precise and automated, the demand for lubricants will increase. Molybdenum diulfide has a high performance and is in great demand.

In the second place, molybdenum dioxide can be added to fuels as an additive that will improve combustion efficiency, reduce pollution, reduce air pollutants and increase energy efficiency. As environmental awareness continues to grow and environmental policies are strengthened, the use of molybdenum dioxide as a green additive will continue to be promoted.

Moreover, molybdenum diulfide can also be combined with other materials such as resins, fibres composites, rubbers, etc. to produce high-performance materials. These composites have excellent mechanical and corrosion-resistant properties and are widely used by the automotive, aerospace, electronic and other industries. High-performance materials are in high demand due to the rapid growth and development of the high-tech industry. Molybdenum is one component and will see an increased demand.

The molybdenum-disulfide compound can also be applied in new energy fields such as solar panels and energy storage batteries. As new energy technologies continue to be developed, demand for molybdenum will increase. This will provide new momentum for the development of the market.

The price of disulfide molybdenum will also gradually decrease with the continual improvement of the process and the reduction in production cost, which will further promote the growth of market demand. In parallel, as environmental awareness increases and technological progress continues, some new production technologies and processes will be slowly applied to the production molybdenum. This will further promote the development of the market for molybdenum.

According to the report from the market research company the global molybdenum market will continue rapid growth for the next several years with an annual rate of growth of over 10%. Globally, it is estimated that the molybdenum-disulfide industry will surpass $1 billion in 2025. China is a big producer and user of molybdenum, so the market will continue to grow rapidly.

Molybdenum disulfide Powder Price :

Many factors influence the price, such as the economic activity, the sentiment of the market and the unexpected event.

You can contact us for a quotation if you want to know the current price of Molybdenum diulfide powder.

Molybdenum disulfide Powder Supplier :

Technology Co. Ltd. has been a leading global chemical supplier and manufacturer for over 12 years.

Chemicals and nanomaterials of high quality, including silicon powder (nitride), graphite powder (graphite oxide), zinc sulfide (zinc sulfide), boron powder (3D printing powder), etc.

Send us an email if you want to know more about our high-quality Molybdenum diulfide powder.

Newsmanysmileys is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high quality chemicals and Nano materials such as graphite powder, boron powder , zinc sulfide , nitride powder, Calcium nitride, Ca3N2, 3D printing powder, and so on.


And our innovative, high-performance materials are widely used in all aspects of daily life, including but not limited to the automotive, electrical, electronics, information technology, petrochemical, oil, ceramics, paint, metallurgy, solar energy, and catalysis. Our main product list as following:

Metal and alloy powder: boron, nickel, silicon, copper, iron, aluminum. chrome, silver

Boride powder: magnesium boride, aluminum boride, boron nitride, boron carbide, hafnium boride;

Sulfide powder: Molybdenum sulfide, zinc sulfide, bismuth sulfide;

Oxide powder: ITO, ATO, iron oxide, titanium oxide, manganese oxide, copper oxide;about.jpg

Carbide powder: titanium carbide, manganese carbide, titanium carbonitride, hafnium carbide;

Nitride powder: Aluminum nitride, hafnium nitride, magnesium nitride, vanadium nitride;

Silicide powder: hafnium silicide, molybdenum silicide, tantalum silicide;

Hydride powder: Hafnium hydride, vanadium hydride, titanium hydride, zirconium hydride.etc.

Have any questions or needs, please feel free to contact Newsmanysmileys.